Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Biochem Funct ; 42(3): e4001, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38571370

RESUMEN

Carbonic anhydrase 8 (CA8) is a member of the α-carbonic anhydrase family but does not catalyze the reversible hydration of carbon dioxide. In the present study, we examined the effects of CA8 on two human colon cancer cell lines, SW480 and SW620, by suppressing CA8 expression through shRNA knockdown. Our results showed that knockdown of CA8 decreased cell growth and cell mobility in SW620 cells, but not in SW480 cells. In addition, downregulated CA8 resulted in a significant decrease of glucose uptake in both SW480 and SW620 cells. Interestingly, stable downregulation of CA8 decreased phosphofructokinase-1 expression but increased glucose transporter 3 (GLUT3) levels in SW620 cells. However, transient downregulation of CA8 fails to up-regulate GLUT3 expression, indicating that the increased GLUT3 observed in SW620-shCA8 cells is a compensatory effect. In addition, the interaction between CA8 and GLUT3 was evidenced by pull-down and IP assays. On the other hand, we showed that metformin, a first-line drug for type II diabetes patients, significantly inhibited cell migration of SW620 cells, depending on the expressions of CA8 and focal adhesion kinase. Taken together, our data demonstrate that when compared to primary colon cancer SW480 cells, metastatic colon cancer SW620 cells respond differently to downregulated CA8, indicating that CA8 in more aggressive cancer cells may play a more important role in controlling cell survival and metformin response. CA8 may affect glucose metabolism- and cell invasion-related molecules in colon cancer, suggesting that CA8 may be a potential target in future cancer therapy.


Asunto(s)
Anhidrasas Carbónicas , Neoplasias del Colon , Neoplasias Colorrectales , Diabetes Mellitus Tipo 2 , Metformina , Humanos , Transportador de Glucosa de Tipo 3/genética , Línea Celular Tumoral , Supervivencia Celular , Neoplasias del Colon/metabolismo , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Glucosa , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo
2.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36292952

RESUMEN

Lysine-deficient protein kinase-1 (WNK1) is critical for both embryonic angiogenesis and tumor-induced angiogenesis. However, the downstream effectors of WNK1 during these processes remain ambiguous. In this study, we identified that oxidative stress responsive 1b (osr1b) is upregulated in endothelial cells in both embryonic and tumor-induced angiogenesis in zebrafish, accompanied by downregulation of protein phosphatase 2A (pp2a) subunit ppp2r1bb. In addition, wnk1a and osr1b are upregulated in two liver cancer transgenic fish models: [tert x p53-/-] and [HBx,src,p53-/-,RPIA], while ppp2r1bb is downregulated in [tert x p53-/-]. Furthermore, using HUVEC endothelial cells co-cultured with HepG2 hepatoma cells, we confirmed that WNK1 plays a critical role in the induction of hepatoma cell migration in both endothelial cells and hepatoma cells. Moreover, overexpression of OSR1 can rescue the reduced cell migration caused by shWNK1 knockdown in HUVEC cells, indicating OSR1 is downstream of WNK1 in endothelial cells promoting hepatoma cell migration. Overexpression of PPP2R1A can rescue the increased cell migration caused by WNK1 overexpression in HepG2, indicating that PPP2R1A is a downstream effector in hepatoma. The combinatorial treatment with WNK1 inhibitor (WNK463) and OSR1 inhibitor (Rafoxanide) plus oligo-fucoidan via oral gavage to feed [HBx,src,p53-/-,RPIA] transgenic fish exhibits much more significant anticancer efficacy than Regorafenib for advanced HCC. Importantly, oligo-fucoidan can reduce the cell senescence marker-IL-1ß expression. Furthermore, oligo-fucoidan reduces the increased cell senescence-associated ß-galactosidase activity in tert transgenic fish treated with WNK1-OSR1 inhibitors. Our results reveal the WNK1-OSR1-PPP2R1A axis plays a critical role in both endothelial and hepatoma cells during tumor-induced angiogenesis promoting cancer cell migration. By in vitro and in vivo experiments, we further uncover the molecular mechanisms of WNK1 and its downstream effectors during tumor-induced angiogenesis. Targeting WNK1-OSR1-mediated anti-angiogenesis and anti-cancer activity, the undesired inflammation response caused by inhibiting WNK1-OSR1 can be attenuated by the combination therapy with oligo-fucoidan and may improve the efficacy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Proteína Quinasa Deficiente en Lisina WNK 1/genética , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Pez Cebra/metabolismo , Rafoxanida , Proteína Fosfatasa 2/metabolismo , Lisina , Proteína p53 Supresora de Tumor , Antígenos de Histocompatibilidad Menor , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Factores de Transcripción/metabolismo , beta-Galactosidasa/metabolismo
4.
Cell Signal ; 96: 110371, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35649473

RESUMEN

With-no-lysine kinases (WNKs) are a novel family of serine/threonine protein kinases participating in ion homeostasis via the WNK-OSR1/SPAK-NKCC cascade. Recent studies of WNK1 have revealed that its related signaling pathways mediated tumor-induced angiogenesis and carcinogenesis and uncovered novel roles of WNK1 in endothelial cell migration and proliferation, tumor cell proliferation, and metastasis. Herein, we review the functions of WNK1 in cancer metastasis and angiogenesis and propose WNK1 targeting as an anti-cancer strategy.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteínas Serina-Treonina Quinasas , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Antígenos de Histocompatibilidad Menor , Transducción de Señal/fisiología , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo
5.
Metab Brain Dis ; 37(6): 2103-2120, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35488942

RESUMEN

Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is an autosomal dominant neurodegenerative disease. This disorder is caused by polyglutamine (polyQ)-containing mutant ataxin-3, which tends to misfold and aggregate in neuron cells. We previously demonstrated a protective function of carbonic anhydrase 8 (CA8) in MJD disease models and a decreased glycolytic activity associated with down-regulated CA8 in a human osteosarcoma (OS) cell model. Given that a reduction in body weight accompanied by gait and balance instability was observed in MJD patients and transgenic (Tg) mice, in this study, we aimed to examine whether metabolic defects are associated with MJD and whether CA8 expression is involved in metabolic dysfunction in MJD. Our data first showed that glucose uptake ability decreases in cells harboring mutant ataxin-3, but increases in cells overexpressing CA8. In addition, the expressions of glucose transporter 3 (GLUT3) and phosphofructokinase-1 (PFK1) were significantly decreased in the presence of mutant ataxin-3. Consistently, immunohistochemistry (IHC) showed that GLUT3 was less expressed in cerebella of aged MJD Tg mice, indicating that the dysfunction of GLUT3 may be associated with late-stage disease. On the other hand, transient down-regulation of CA8 revealed decreased expressions of GLUT3 and PFK1 in HEK293 cells harboring wild-type (WT) ataxin-3, but no further reduction of GLUT3 and PFK1 expressions were observed in HEK293 cells harboring mutant ataxin-3. Moreover, immunoprecipitation (IP) and immunofluorescence (IF) demonstrated that interactions exist between ataxin-3, CA8 and GLUT3 in MJD cellular and Tg models. These lines of evidence suggest that CA8 plays an important role in glucose metabolism and has different impacts on cells with or without mutant ataxin-3. Interestingly, the decreased relative abundance of Firmicutes/Bacteroidetes (F/B) ratio in the feces of aged MJD Tg mice coincided with weight loss and metabolic dysfunction in MJD. Taken together, our results are the first to demonstrate the effects of CA8 on glucose metabolism and its involvement in the metabolic defects in MJD disease. Further investigations will be required to clarify the underlying mechanisms for the metabolic defects associated with MJD.


Asunto(s)
Biomarcadores de Tumor , Anhidrasas Carbónicas , Glucosa , Enfermedad de Machado-Joseph , Anciano , Animales , Ataxina-3/genética , Ataxina-3/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/fisiología , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/fisiología , Glucosa/metabolismo , Transportador de Glucosa de Tipo 3/metabolismo , Células HEK293 , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Ratones , Ratones Transgénicos
6.
J Neurosci Res ; 97(10): 1278-1297, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31157458

RESUMEN

Machado-Joseph disease (MJD)/Spinocerebellar ataxia type 3 (SCA3) is an inherited neurodegenerative disease that can lead to a regression of motor coordination and muscle control in the extremities. It is known that expansion of CAG repeats encodes abnormally long polyQ in mutant ataxin-3, the disease protein. It is also noted that mutant ataxin-3 interacts with 1,4,5-trisphosphate receptor type 1 (IP3R1) and induces abnormal Ca2+ release. Previously, we have shown a significant increase in the expression of carbonic anhydrase VIII (CA8) in SK-N-SH-MJD78 cells, which are human neuroblastoma cells overexpressing mutant ataxin-3 with 78 glutamine repeats. In the current study, we showed the presence of significantly increased CA8 expression in MJD mouse cerebellum in either early or late disease stage, with a gradual decrease in CA8 expression as the MJD mice naturally aged. By immunofluorescence and immunoprecipitation analysis, we also found that CA8 co-localized and interacted with mutant ataxin-3 in SK-N-SH-MJD78 cells harboring overexpressed CA8 (SK-MJD78-CA8). In addition, we found that SK-MJD78-CA8 cells, as well as cerebellar granule neurons (CGNs) of MJD transgenic (Tg) mouse with overexpressed CA8, were more resistant to reactive oxygen species (ROS) stress than the control cells. Importantly, overexpression of CA8 in SK-MJD78-CA8 cells and in MJD CGNs rescued abnormal Ca2+ release and caused an increase in cell survival. In summary, we demonstrate the protective function of CA8 in MJD disease models and speculate that the declining expression of CA8 following an initial increased expression may be related to the late onset phenomenon of MJD.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Anhidrasas Carbónicas/metabolismo , Cerebelo/metabolismo , Enfermedad de Machado-Joseph/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Animales , Ataxina-3/metabolismo , Línea Celular , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...